

Preliminary datasheet Rev.1 SENIS® AnyAxis Sensor SENM3D20

3Axis hall sensor

1. DESCRIPTION:

AnyAxis, a successor stemming from the established SENM3Dx is designed to enhance magnetic field sensing capabilities with a range of advanced features. Three-axis Hall sensor, AnyAxis enables simultaneous measurement of magnetic field components at a single point. The sensor supports four programmable dynamic ranges) providing adaptability to varied operational needs and flexibility with three acquisition modes. AnyAxis offers programmable interrupt modes and with an embedded LDO regulator, the sensor ensures flexibility and efficiency. High-speed 16-bit ADC of AnyAxis facilitates swift and accurate data acquisition. An 8-bit mode is available for even faster data readout. EEPROM for internal calibration and device address programmability through EEPROM memory for multiple-devices configuration. AnyAxis offers a practical and reliable solution for magnetic field sensing needs, emphasizing accuracy and adaptability across diverse applications.

2. KEY FEATURES

ANYAXIS is a three axis HALL sensor IC with these following features:

- Three axis Hall sensor (X, Y and Z)
- Four programmable dynamic ranges +/- 12.5mT / 50mT / 100mT and 200mT.
- Built-in temperature sensor. Temperature readout on demand by the host.
- Three acquisition modes: On demand, slow (programmable refresh rate) or continuous.
- Programmable interrupt modes: Absolute or relative threshold, signed or unsigned.
- Large range single power supply (2.5V to 5V) with embedded LDO regulator.
- Temperature range: -40C to 150C, with degraded performance above 125C.
- Serial interface: I2C FM+ Device address programmable through EEPROM memory for multiple-devices configuration.
- 16-bit ADC with 25 Ks/s refresh rate (1 axis) or 8.33 Ks/s (3 axis). An 8-bit mode for faster data readout.
- EEPROM memory for internal calibration: oscillator, bandgap and temperature sensor. Sensor offset, temperature coefficient compensation and system configuration.

• Process X-FAB XP018

AnyAxis

Contents:

2. KEY FEATURES 2 3. ELECTRICAL PARAMETERS AND SENSOR PERFORMANCES 4 3.1. Absolute maximum Ratings 4 3.2. Electrical characteristics 4 3.2.1. Power supply voltages and current 4 3.2.2. Sensor performance 5 3.3 Magnetic performances 5 3.4 FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode 8 4.1.3 Continuous mode 9 4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 12 4.3.4 Main digital section 12 4.3.1 Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1.12C register map 17	1.	DESCRIPTION:	1
3. ELECTRICAL PARAMETERS AND SENSOR PERFORMANCES. 4 3.1. Absolute maximum Ratings. 4 3.2. Electrical characteristics. 4 3.2.1. Power supply voltages and current. 4 3.2.2. Sensor performance 5 3.3 Magnetic performances. 5 4. FUNCTIONAL DESCRIPTION. 7 4.1. Device modes of operation 7 4.1.1. On demand mode. 8 4.1.2. Slow mode. 9 4.2.1 Calibration. 11 4.2.2. Temperature calibration. 11 4.2.3 Gain calibration. 12 4.3.1 Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory. 15 4.4. Communication interface 17 4.4.1.12C register map 17 4.4.2.12C commander 17	2.	KEY FEATURES	2
3.1. Absolute maximum Ratings 4 3.2. Electrical characteristics 4 3.2.1. Power supply voltages and current 4 3.2.2. Sensor performance 5 3.3 Magnetic performances 5 4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode 8 4.1.3 Continuous mode 9 4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 12 4.3.4. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1.12C register map 17 4.4.1.12C register map 17	3.	ELECTRICAL PARAMETERS AND SENSOR PERFORMANCES	4
3.2. Electrical characteristics 4 3.2.1. Power supply voltages and current 4 3.2.2. Sensor performance 5 3.3 Magnetic performances 5 3.4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode. 8 4.1.3 Continuous mode 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. I2C register map 17 4.4.1. I2C register map 17 4.4.1. I2C commands 17	3.	1. Absolute maximum Ratings	4
3.2.1. Power supply voltages and current 4 3.2.2. Sensor performance 5 3.3 Magnetic performances 5 4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode 8 4.1.3. Continuous mode 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.1. I2C commande 31	3.	2. Electrical characteristics	4
3.2.2. Sensor performance 5 3.3 Magnetic performances 5 4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode 8 4.1.3 Continuous mode. 9 4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory. 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.1. I2C register map 17		3.2.1. Power supply voltages and current	4
3.3 Magnetic performances 5 4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode. 8 4.1.2. Slow mode. 8 4.1.3 Continuous mode. 9 4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1.12C register map 17 4.4.2.12C commands 21		3.2.2. Sensor performance	5
4. FUNCTIONAL DESCRIPTION 7 4.1. Device modes of operation 7 4.1.1. On demand mode 8 4.1.2. Slow mode 8 4.1.3. Continuous mode 9 4.2. Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4. Output offset calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1.12C register map 17 4.4.2.12C commande 21	3.	3 Magnetic performances	5
4.1. Device modes of operation 7 4.1.1. On demand mode .8 4.1.2. Slow mode .8 4.1.3 Continuous mode .9 4.2 Magnetic (Hall effect) sensor circuit .9 4.2.1 Calibration .11 4.2.2. Temperature calibration .11 4.2.3 Gain calibration .11 4.2.4 Output offset calibration .12 4.3.5. Clock calibration .12 4.3.1. Main sequencer .13 4.3.2. ADC Back-end interface .14 4.3.4. EEPROM memory .15 4.4. Communication interface .17 4.4.1.12C register map .17 4.4.2.12C commands .21	4.	FUNCTIONAL DESCRIPTION	7
4.1.1. On demand mode	4.	1. Device modes of operation	7
4.1.2. Slow mode		4.1.1. On demand mode	8
4.1.3 Continuous mode. 9 4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.1.2. Slow mode	8
4.2 Magnetic (Hall effect) sensor circuit 9 4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 11 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.1.3 Continuous mode	9
4.2.1 Calibration 11 4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21	4.	2 Magnetic (Hall effect) sensor circuit	9
4.2.2. Temperature calibration 11 4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.2.1 Calibration1	1
4.2.3 Gain calibration 11 4.2.4 Output offset calibration 12 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.2.2. Temperature calibration	1
4.2.4 Output offset calibration 12 4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.2.3 Gain calibration1	1
4.2.5. Clock calibration 12 4.3. Main digital section 12 4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.2.4 Output offset calibration1	2
4.3. Main digital section		4.2.5. Clock calibration	2
4.3.1. Main sequencer 13 4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21	4.	3. Main digital section1	2
4.3.2. ADC Back-end interface 14 4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.3.1. Main sequencer	3
4.3.3. Interrupt 14 4.3.4. EEPROM memory 15 4.4. Communication interface 17 4.4.1. I2C register map 17 4.4.2. I2C commands 21		4.3.2. ADC Back-end interface	4
4.3.4. EEPROM memory		4.3.3. Interrupt	4
4.4. Communication interface		4.3.4. EEPROM memory	5
4.4.1. I2C register map	4.	4. Communication interface	7
4.4.2 J2C commands 21		4.4.1. I2C register map	7
4.4.2. ICC COMMINICITIES		4.4.2. I2C commands	1
5. MECHANICAL	5.	MECHANICAL	2
5.1. Pin function description and position (I2C interface)	5.	1. Pin function description and position (I2C interface)	2
The displayed information is believed to be accurate and reliable. However, no responsibility is assumed SENIS AG for its use nor for any infringements of patents or other rights of third parties that may regult from its use a second	The o	displayed information is believed to be accurate and reliable. However, no responsibility is assumed SENIS AG for	r >

-

3. ELECTRICAL PARAMETERS AND SENSOR PERFORMANCE

Unless otherwise noted, the given specifications and characteristics are typical values and apply for room temperature (23°C) and after a device warm up time of 15 minutes and VCC=5 V.

3.1. Absolute maximum Ratings

Parameter	Symbol	Rating		Unit
		Min	Max	
Power Supply Voltage	VCC	-0.7	7	V
All outputs		-0.3	7	V
Storage Temperature	TSTG	-50	150	°C
Operating Temperature Range	Tamb	-40	150	°C
Lead Temperature (soldering, 10 seconds)	TL		220	°C
ESD HBM Protection	Vesd		2.0	kV

 Table 1: I2C Absolute maximum ratings.

3.2. Electrical characteristics

3.2.1. Power supply voltages and current

Parameter description / test conditions	Min	Тур	Max	Unit
Power supply voltage VCC	2.5		4.2	V
Active mode current VCC			3	mA
Idle mode current			10	uA
Sleep mode current			10	nA
Power on reset threshold			2.4	V
Power on reset hysteresis		250		mV
Power on delay from power up			30	us
Power on delay from idle			1u	mV
Power on delay from sleep			30	us

Table 2: Voltages and current

3.2.2. Sensor performance

Parameter description / test conditions	Min	Тур	Max	Unit
Magnetic field sensitivity range (4 selectable ranges)	12.5m		200m	Т
Magnetic field fine sensitivity programming resolution (in any range)		0.4		% of S
Magnetic sensitivity temperature drift (-40c to 150C)	-1		1	% of S
Magnetic sensitivity temperature compensation range	0		2800	ppm/C of S
Magnetic sensitivity temperature compensation resolution		175		ppm/C of S
Magnetic offset (16-bits mode)			0.5	% of S
Magnetic offset drift (16-bits mode)			0.02	% of S/ C
RTI Noise			200u	T _{RMS}
Output bandwidth			12.5	kHz
Temperature resolution		25m		C/Cnt

 Table 3: I2C performance characteristics

3.3 Magnetic performances

Non-linearity of the sensor signal is < 1% for all axis over the full signal range.

Sonsitivity to DC magnetic field	Value	e for specified	axis
Sensitivity to be magnetic neid	Bx	Ву	Bz
Range		Sensiti	ivity [V/T]
15 mT	TBD	TBD	TBD
30 mT	TBD	TBD	TBD
300 mT	TBD	TBD	TBD
3000 mT	TBD	TBD	TBD
Range	9	Sensitivity [AD0	C cnts/T]
15 mT	TBD	TBD	TBD
30 mT	TBD	TBD	TBD
300 mT	TBD	TBD	TBD
3000 mT	TBD	TBD	TBD

Table 4: Sensor sensitivity

Zara Magnetic Field Offsets	Value for specified axis				
	Bx	Ву	Bz		
Range	Corresponding Digita	al Output [ADC	cnts]		
15 mT	TBD	TBD	TBD		
30 mT	TBD	TBD	TBD		
300 mT	TBD	TBD	TBD		
3000 mT	TBD	TBD	TBD		
Range	Corresponding Magnetic Field [mT]				
15 mT	TBD	TBD	TBD		
30 mT	TBD	TBD	TBD		
300 mT	TBD	TBD	TBD		
3000 mT	TBD	TBD	TBD		

 Table 5: Uncorrected zero magnetic field offsets

Noise Spectral Densities		Value for specified axis			
Noise Spectral Densities	B	x	Ву	Bz	
Range	Voltage Noise NSD @ f >	→ 10 Hz (whit	te noise), [μV,	\sqrt{Hz}]	
15 mT	16	5.0 1	19.0	17.0	
30 mT	9.	2	9.3	8.5	
300 mT	1.	3	1.3	1.2	
3000 mT	0.9	90 (0.91	0.85	
Range	Corresponding Magnetic Field NSD @ f >	10 Hz (white	e noise), [µT/	\sqrt{Hz}]	
15 mT	0.9	90 (0.91	0.85	
30 mT	0.1	13 (0.14	0.15	
300 mT	0.1	19 (0.20	0.27	
3000 mT	1.5	50	1.52	1.60	

Table 6: Input referred, equivalent white noise specification of the sensor

4. FUNCTIONAL DESCRIPTION

4.1. Device modes of operation

There are 3 modes of operations as described in the following table, drawing different amount of power from the power supply:

- On Demand mode.
- Slow mode.
- Continuous mode.

Mode of operation	Power state	Power supply behavior	Oscillator behavior
On demand	Sleep -> Active -> Sleep	1.8V LDO is disabled. I2C interface powered through main power supplies VCC/VCCIO. (<i>Note 1</i>)	Off (not powered)
Slow	Idle -> Active - > Idle	1.8V LDO is enabled, and powers the oscillator and a timer to wake up the device at regular intervals.I2C interface powered through main power supplies VCC/VCCIO.(Note 1)	On 32 kHz output, not calibrated. (+/- 5%)
Continuous	Active	1.8V LDO is enabled, and powers the entire device.I2C interface powered through main power supplies VCC/VCCIO.	On 4 MHz output, calibrated
		Table 7: Modes of operation	

Once the conversion period is complete, the new conversion data are stored into registers and compared to the interrupt threshold of the enabled sensors and the interrupt line is eventually activated low to indicate a valid interrupt condition. At the same time the data validity flags inside the **STATUS** register are set. From that point the device goes back to Sleep/Idle, and the host can read the data at any time. If a new conversion cycle starts the current data will be lost. The Data validity flags are cleared when entering Active power state.

Note 1: When going out of Idle/Sleep power state due to a host request or an internal wake-up event, the device goes to Active power state. The internal resources are enabled, and the conversion sequence is performed after a settling period whose duration depends on the mode of operation (going out of sleep power state takes longer than going out of idle power state). Depending on the number of sensors enabled through the register **SENSOR_CFG**, and the number of averaged samples defined by the **FILTER_CFG** register, from 1 to 4*128 = 512 conversion cycles are executed.

4.1.1. On demand mode

This is the least power consuming mode, in which the device consumes less than 10nA while in sleep power state. The duration of the active state depends on the **FILTER_CFG** register where the number of average samples are defined and on the **SENSOR_CFG** register where individual sensors (X, Y, Z and Temperature) are enabled.

The sequencing of this mode is:

- The IC wakes up from sleep with the I2C command CMD_WAKEUP.
- The 1.8V LDO and 4MHz oscillator are turned ON. The device will take 30us to turn itself on before any magnetic field measurement can start.
- The magnetic field measurement starts according to **SENSOR_CFG** and **SENSOR_CFG** registers and the corresponding ADC data are saved into the appropriate shadow registers.
- Go back to Sleep power state by shutting down the power supply to the 1.8V section.

4.1.2. Slow mode

In this mode, the device consumes less than 10uA while in idle power state. The duration of the active state depends on the FILTER_CFG register where the number of average samples is defined, and on the SENSOR_CFG register where individual sensors (X, Y, Z and Temperature) are enabled. The 1.8V LDO remains active during Idle.

The sequencing of this mode is:

- The device wakes up from Idle power state every time an internal timer running on an un-calibrated 32KHz oscillator reaches the delay defined in the **READOUT_CFG** register.
- The oscillator frequency is increased from 32KHz to 4MHz.
- The magnetic field measurement starts according to **SENSOR_CFG** and **SENSOR_CFG** registers and the corresponding ADC data are saved into the appropriate shadow registers.
- Go back to Idle power state by reducing the oscillator frequency to 32kHz and switching Off the analog sensors.

Note: If the **SENSOR_CFG** and **FILTER_CFG** registers settings yields a conversion time larger than the delay defined by the **READOUT_CFG** register, then the device will never go to Idle power state and will operate in Continuous mode.

4.1.3 Continuous mode

The IC remains at high power and operates at its maximum conversion rate.

The sequencing of this mode is:

Measure the magnetic field continuously according to SENSOR_CFG and FILTER_CFG registers and save the ADC data into the appropriate shadow registers. The data validity flags of the sensors enabled through the SENSOR_CFG register remain set after the first conversion.

Note: The data update rate is defined by the **SENSOR_CFG** and **FILTER_CFG** registers with a maximum of 25 Ksamples/s if one sensor is enabled and one sample is taken.

4.2 Magnetic (Hall effect) sensor circuit

Figure 2: Hall sensor

Three HALL sensors for different magnetic axes are used in this IC (X, Y and Z planes).

- The gain of the Hall sensor is controlled by the **x_GAIN_CAL** register through the adjustment of the bias current of the Hall sensor.
- A 3 to 1 analog multiplexer connects the 3 sensors to a common analog processing circuit and a 16-bit ADC. An additional mux input will allow the conversion of the Temperature sensor voltage, for internal temperature compensation and eventual host readout.
- The Hall sensor uses 4 phase rectification to measure the magnetic field. Each of the measurement cycle lasts 4us.
- The ADC is a 16 ΔΣ with an oversampling ratio of 32. The digital filter is a 3rd order decimator followed by an averaging circuit. The number of samples "nb_sample" defined by the register **FILTER_CFG** are summed together, and the result is divided by the number of samples.
- Each measurement sample (include 16bit ADC) requires 2*32+"nb_sample" *32 +4 clock cycles (4MHz). A smaller number of samples allow a faster conversion time at the expense of a higher noise figure. On the other hand, a larger number of samples increases the conversion time but reduces the noise figure.
- •
- The sensor configuration register allows the user to define the sensitivity of the IC.
- The range can be selected from 12.5mT, 50mT, 100mT and 200mT respectively.
- Each sensor can be enabled/disabled individually.

To configure the sensors six registers are used:

SENSOR_CFG selects sensitivity, magnetic axes, and mode of operation.

READOUT_CFG selects update rate in slow mode.

FILTER_CFG selects digital filter setting and interrupt signal generation mode.

INT_THRES_X, **INT_THRES_Y** and **INT_THRES_Z** define the comparison threshold for interrupt generation.

Filter setting (FILTER_CFG)	# Sample	Noise RTI (uTrms)	1 Sensor (sample/s)	3 Sensors (sample/s)
0	1	141	25000	8333
1	2	100	20833	6944
2	4	71	13889	4630
3	8	50	7813	2604
4	16	35	4032	1344
5	32	25	2016	672
6	64	18	1000	333
7	128	13	496	165

Table 8: Noise figure / conversion rate vs number of samples

4.2.1 Calibration

The calibration parameters are saved in the EEPROM memory. Upon reset, and if the checksum of the factory page is corrected, the EEPROM content will be copied into the main register. If the checksum is wrong, the default value will be used.

4.2.2. Temperature calibration

The reading from temperature sensor will be added with TEMP_CAL (16bits) to yield 0x8000 at 30 degree C. The temperature can be determined by the following equations: $T_{IC} = \langle DATATH: DATATL \rangle /40 -789$ (16-bit readout mode) $T_{IC} = \langle DATAT \rangle *6.4 -789$ (8-bit readout mode)

4.2.3 Gain calibration

Gain variation including the temperature coefficient is compensated through analog circuitry in the Hall sensor measurement.

- The gain (sensitivity) calibration is done through the ***_GAIN_CAL** registers, which control the bias current driven through the HALL sensor. The current range of the calibration is from minimum 16uA to a maximum of 4.08mA. The gain is calibrated in factory at the maximum sensitivity (12.5mT), and compensation for gain setting will be scaled accordingly by shifting the register contents, so no additional calibration is required.
- The gain temperature coefficient calibration is done through ***_GAIN_TC_CAL** registers, which control the temperature coefficient of the bias current in two segments. The first segment (4 LSBs) is for temperatures below 30C, while the second segment (4 MSBs) compensates for temperature greater than 30C. The TC compensation range is from 800ppm to 3000ppm in 15 steps. The same compensation parameter will be used for all gain settings.

4.2.4 Output offset calibration

Offset calibration is done through the digital section by subtracting the content of registers *_OFF_CAL of the readout result. The offset temperature coefficient is compensated through analog injection before the ADC, using the register. The offset calibration is done at the maximum sensitivity (12.5 mT), and the offset will be scaled down for other gain.

Output_(digital) = ADC + ***_OFF_CAL***32/<scale_factor^{*}>.

• The TC offset calibration is done through a temperature compensation circuit and a DAC to control the scale of the correction. Two registers are provided for temperatures smaller than 30C (*_OFF_TC_CAL1) and temperature greater than 30C (*_OFF_TC_CAL2).

Output_(analog) = sensor voltage + ***_OFF_TC_CAL(1,2)***16/< scale_factor*>.

4.2.5. Clock calibration

• The register CLOCK_CAL is used to calibrate the clock frequency to 4MHz (Temperature 30 degree C).

4.3. Main digital section

The main digital section is composed of the main sequencer, ADC back-end interface, I2C interface and associated data register, and EEPROM memory.

Depending on if the associated resources are needed in Sleep power state (where 1.8V power supply is not available), individual functional blocks are either located in the 1.8V power domain, or in the external power supply domain VCC.

In Idle power state (in-between conversions in slow mode of operation) the functional blocks inside the 1.8V power domain are powered and keeps their active state, and the clock source remains active at low frequency (32KHz).

Note: Functional blocks inside the VCC power domain are always ON. Some will be sequenced by the 32KHz oscillator while others will be sequenced by the I2C SCL clock.

4.3.1. Main sequencer

Power domain: VCC. Clock domain: Local oscillator.

The purpose of the main sequencer is to sequence all the device operations, both in Sleep/Idle power state to wake-up the device when required, and in Active power state to control the various phases required to process the active Hall sensor signal all the way to ADC conversion, and interrupt monitoring.

From the moment the device goes out of Sleep/Idle power mode for conversion to the moment it goes back to this power mode again, a suite of tasks is performed as shown in the following timing diagram.

- 5. Wake-up: the processing is different for Idle or Sleep.
 - a. Sleep power state: The 1.8V regulator is started, followed by the 4MHz oscillator and the internal bias sources. Then the main digital section starts.
 - b. Idle power state: oscillator frequency is switched from 32 KHz to 4 MHz, the internal bias sources are turned ON. The main digital section keeps its current state.
- 6. Conversion process: one by one, the sensors enabled through the **SENSOR_CFG** register are processed by the ADC sub-module. If multiple samples are accumulated, then the conversion process is performed as many times as necessary.
- 7. Post-processing: the conversion data are transferred to the I2C power domain, ready for readout. The Data ready flags inside the **STATUS** register are updated, and the data are compared to the internally calculated interrupt threshold. If a valid condition is found the external interrupt line is activated.

For the continuous mode, in which the device does not go to Idle or Sleep power mode between conversions, the task 'wake-up' is bypassed.

4.3.2. ADC Back-end interface

Power domain: 1.8V. Clock domain: Local oscillator.

The ADC back-end interface includes the Sigma-Delta back-end filters, which will accumulate as many samples as specified by the **FILTER_CFG** register. The resulting 16-bit data (16 MSBs) will be offset compensated (see below).

4.3.3. Interrupt

The interrupt feature allows the host controller to be notified when the signal level of one of the X/Y/Z hall-effect sensor sensors behaves as defined by the interrupt control register INT_CFG. Depending on the configuration bit set inside the DEVICE_CFG memory cell inside the EEPROM memory, the interrupt line can be assigned to a dedicated INT pad or be shared with the I2C SCL line. In either case the interrupt event is signaled by a 10 us low-level pulse.

Two Interrupt modes are available:

- An absolute mode in which the pre-defined threshold (registers *_INT_THRESH) is compared directly to the X/Y/Z sensor ADC data.
- A Relative mode where the pre-defined threshold is added as a signed number to the previous data sample. If the threshold would trigger an overflow/underflow when added to the signal level, then the threshold will be set to <max positive value>/<min positive value>.

For both modes, and in case the interrupt is programmed as signed, the threshold is a signed number, and only signal level above a positive level (positive threshold) or below a negative level (negative threshold) will generate an interrupt event. For the unsigned configuration the unsigned threshold is compared to the absolute value of the data sample.

The following table shows how the internal threshold is calculated depending on the current mode of operation.

Mode	Signed	Unsigned
Absolute	INTTHRESH x 2 ⁹ compared to <conversion data=""></conversion>	INTTHRESH x 2 ⁸ compared to <conversion data=""> </conversion>
Relative	<previous conversion="" data=""> + INTTHRESH x 2⁹ compared to <conversion data=""></conversion></previous>	<pre> <previous conversion="" data=""> + INTTHRESH x 2⁸ compared to <conversion data=""> </conversion></previous></pre>

Table 9: Interrupt threshold calculation

4.3.4. EEPROM memory

Power domain: VCC and 1.8V. In Sleep power state the VCC power supply will be disconnected while the 1.8V is not available.

Clock domain: Local oscillator.

The non-volatile memory is built around a 32 x 8 EEPROM IP. It can be programmed once the device is configured into an 'EEPROM access mode' through an I2C command. From that point the EEPROM shadow registers accessible inside the I2C memory map can be programmed into the EEPROM memory, one page at a time (Factory and user page). In case of the factory page, and if the lock bit is set, the associated shadow registers cannot be modified anymore. Another command will transfer the EEPROM contents inside the EEPROM shadow registers.

The EEPROM includes 2 pages, each associated with a checksum and a lock bit that prevents any further write access once set.

- The factory page contains calibration data (Oscillator frequency trimming; offset, gain calibration and 2nd order temperature coefficients for the 3 sensitivity levels of X/Y/Z Halleffect sensors; offset calibration for the temperature sensor). It also contains Company / Factory ID information.
- 2. The user page contains device configuration parameters, such as I2C device address and physical interrupt handling, as well as the value of the device configuration registers, to allow a device operation in a configuration without a Host controller.

Two bytes of user data can be used to store any information relevant to the product.

The following table shows EEPROM memory.

Byte #	Name	Meaning		
	User Pages	Calibrate and configure at factory		
0	SENSOR_CFG	Sensor configuration		
1	READOUT_CFG	Read out configuration		
2	FILTER_CFG	Filter Configuration		
3	X_INT_ THRES	X sensor threshold (x256)		
4	Y_INT_THRES	Y sensor threshold (x256)		
5	Z_INT_THRES	Z sensor threshold (x256)		
6	DEV_CFG	IC2 device address configuration / Interrupt pad		
		configuration		
7	USER_DATA1	Can be used to store product information.		
8	USER_DATA2	The bit 7 of USER_DATA2 is used as a lock bit for the		
		User page.		
9	CHECKSUM_USER	Checksum. Sum of bytes [8:0]-1		
	Factory page			
10	TEMP_CAL0	Temperature calibration low byte		
11	TEMP_CAL1	Temperature calibration high byte		
12	X_GAIN_CAL	X-sensor gain trim (Bias DAC)		
13	X_GAIN_TC_CAL	X-sensor gain TC trim (2 segments)		
14	Y_GAIN_CAL	Y-sensor gain trim (Bias DAC)		
15	Y_GAIN_TC_CAL	Y-sensor gain TC trim (2 segments)		
16	Z_GAIN_CAL	Z-sensor gain trim (Bias DAC)		
17	Z_GAIN_TC_CAL	Z-sensor gain TC trim (2 segments)		
18	X_OFF_CAL	X-sensor offset		
19	X_OFF_TC_CAL1	X-sensor offset TC trim 1 st segment		
20	X_OFF_TC_CAL2	X-sensor offset TC trim 2 nd segment		
21	Y_OFF_CAL	Y-sensor offset		
22	Y_OFF_TC_CAL1	Y-sensor offset TC trim 1 st segment		
23	Y_OFF_TC_CAL2	Y-sensor offset TC trim 2 nd segment		
24	Z_OFF_CAL	Z-sensor offset		
25	Z_OFF_TC_CAL1	Z-sensor offset TC trim 1 st segment		
26	Z_OFF_TC_CAL2	Z-sensor offset TC trim 2 nd segment		
27	TC_CAL	Temperature compensation calibration		
28	CLOCK_CAL	Clock 4MHz calibration		
29	DEVICE_ID1	Can be used to store lot and wafer reference		
30	DEVICE_ID2	number.		
		The bit 7 of DEVICE_ID2 is used as a lock bit for the		
		User page.		
31	CHECKSUM_FACTORY	Checksum. Sum of bytes [30:10]-1		

Table 10: EEPROM memory map

4.4. Communication interface

Power domain: VCC. Clock domain: I2C SCL clock.

The communication interface allows the external Host to monitor and control the device status and is an I2C slave port.

The I2C device address can be selected from 16 pre-defined values through the DEVICE_CFG memory cell inside the EEPROM memory. When changing the shadow register contents, the host must keep track of the current device address selection to perform valid I2C access.

4.4.1. I2C register map

The following section details the register map. They can be accessed through I2C for Read and/or write depending on the address.

4.4.1.1. Readout registers

Those registers are used to transmit conversion and status data to the host. The conversion data will be updated when the associated data valid flag inside the STATUS register is activated and will stay valid until the beginning of the next acquisition, at which point the data valid flag will be cleared.

In the continuous mode of operation, the data validity flags will be set as valid after the 1st conversion cycle and stay valid.

The following table shows readout registers.

Register ID	Add	Mode	Bit	Meaning
STATUS	0x00	R	0	1 = EEPROM factory parameters checksum valid
			1	1 = X sensor Data register valid
			2	1 = Y sensor Data register valid
			3	1 = Z sensor Data register valid
			4	1 = Temperature sensor Data register valid
			5	I2C command status
				1 = Command processing underway.
				0 = No active commands.
			7:6	Reserved
DATA_XH	0x01	R	7:0	X sensor conversion data (MSB) (Note 4)
DATA_XL	0x02	R	7:0	X sensor conversion data (LSB)
DATA_YH	0x03	R	7:0	Y sensor conversion data (MSB)
DATA_YL	0x04	R	7:0	Y sensor conversion data (LSB)
DATA_ZH	0x05	R	7:0	Z sensor conversion data (MSB)
DATA_ZL	0x06	R	7:0	Z sensor conversion data (LSB)
DATA_TH	0x07	R	7:0	Temperature sensor conversion data (MSB)
DATA_TL	0x08	R	7:0	Temperature sensor conversion data (LSB)
DATA_X	0x09	R	7:0	X sensor conversion data 8bits
DATA_Y	0x0a	R	7:0	Y sensor conversion data 8bits
DATA_Z	0x0b	R	7:0	Z sensor conversion data 8bits
DATA_T	0x0c	R	7:0	Temperature sensor conversion data 8bits

Table 11: Readout registers map

4.4.1.2. EEPROM shadow registers

The EEPROM shadow registers are loaded from the EEPROM memory at initial start-up if the corresponding page (User or Factory page) is associated with a valid checksum. If the checksum of a given page is not valid, then the default register values are used.

If any shadow register is updated through an I2C write access, the new value will be used for internal processing.

The shadow registers keep their value when exiting Sleep/Idle power state.

Upon host request through an I2C command (see below) the shadow register associated with a given page (Factory or user page) can be programmed into the corresponding EEPROM locations. It is the host responsibility to calculate the proper checksum and decide whether to lock the page through the lock bit.

Another I2C command allows the host to read the EEPROM (both factory and user page).

The table below illustrates how EEPROM values configure the sensor's operational settings.

Register ID	Add	Mode	Bit	Meaning	Default
SENSOR_CFG	0x10	R/W	1:0	Sensor sensitivity	User page
				00 = 12.5 mT	EEPROM
				01 = 50 mT	shadow
				10 = 100 mT	register
				11 = 200 mT	
			2	1 = X sensor enabled	
			3	1 = Y sensor enabled	
			4	1 = Z sensor enabled	
			5	1 = Temperature sensor enabled. Can be disabled	
				only if all 3 sensors X, Y and Z are disabled.	
			7:6	Mode of operation	
				00 = On demand	
				PEADOLIT (CC)	
				1X = Fast (continuous) Undate rate depends on	
				number of sensors enabled including temperature	
READOUT CEG	0x11	R/W	0	Readout data width	
	0X11	.,	U	0 = 16 bits	
				1 = 8 bits (the LSBs are truncated; this applies to the	
				temperature reading as well)	
			6:1	Slow readout update rate	
				= 640 / (1+READOUT_CFG[6-1]) s/s	
				(Range from 10 s/s to 640 s/s)	
			7	1= I2C continuous data readout.	
				0 = I2C user-selected readout	
FILTER_CFG	0x12	R/W	2:0	Number of samples used for averaging. (see table 1)	
				0-7 -> 1, 2, 4, 8, 16, 32, 64 and 128	
			3	Interrupt mode.	
				0 = Absolute mode.	
			<u> </u>	1 = Relative mode.	
			4	Interrupt signed mode.	
				0 = Unsigned mode.	
			7.5	I = Signed mode.	
	0,12	D (M)	7.5	Keselved V concorrinterrupt throshold (Noto 1 holow)	
	0x13		7:0	X sensor interrupt threshold (Note 1 below)	
	0x14		7.0	Z sensor interrupt threshold (Note 1 below)	
	0x15		1.0	2 sensor interrupt timeshold (Note 1 below)	
DEV_CIG	0,10		1.0	$\Omega = \Omega \times \Omega \Omega$	
				01 = 0x01	
				10 = 0x02	
				11 = 0x03	
			2	Interrupt output	
				0 = the interrupt is routed to the dedicated INT pin	
				1= the interrupt is generated as a low pulse on the	
				I2C SCL line.	
			7:3	Reserved	
USER_DATA_1	0x17	R/W		User data	
USER_DATA_2	0x18	R/W			
CHECKSUM_USER	0x19	R/W		Reserved	
TEMP_CAL0	0x1a	R/W	7:0	Temperature sensor offset calibration (LSB)	Factory

The displayed information is believed to be accurate and reliable. However, no responsibility is assumed SENIS AG for its use, nor for any infringements of patents or other rights of third parties that may result from its use *Page 19*

 \sim

Register ID	Add	Mode	Bit	Meaning	Default
TEMP_CAL1	0x1b	R/W	7:0	Temperature sensor offset calibration (MSB)	page
X_GAIN_CAL	0x1c	R/W	7:0	X sensor gain calibration	EEPROM
X_GAIN_TC_CAL	0x1d	R/W	3:0	X sensor gain temperature calibration 1 st segment	shadow
			7:4	X sensor offset temperature calibration 2 nd segment	registers
Y_GAIN_CAL_	0x1e	R/W	7:0	Y sensor gain calibration	(Note 2)
Y_GAIN_TC_CAL	0x1f	R/W	3:0	Y sensor gain temperature calibration 1 st segment	
			7:4	Y sensor gain temperature calibration 2 nd c segment	
Z_GAIN_CAL	0x20	R/W	7:0	Z sensor gain calibration	
Z_GAIN_TC_CAL	0x21	R/W	3:0	Z sensor gain temperature calibration 1 st segment	
			7:4	Z sensor gain temperature calibration 2 nd segment	
X_OFF_CAL	0x22	R/W	7:0	X sensor offset calibration	
X_OFF_TC_CAL1	0x23	R/W		X sensor offset temperature calibration 1 st segment	
X_OFF_TC_CAL2	0x24	R/W	3:0	X sensor offset temperature calibration 2 nd segment	
Y_OFF_CAL_	0x25	R/W	7:0	Y sensor offset	
Y_OFF_TC_CAL1	0x26	R/W		Y sensor offset temperature calibration 1 st segment	
Y_OFF_TC_CAL2	0x27	R/W	3:0	Y sensor offset temperature calibration 2 nd segment	
Z_OFF_CAL	0x28	R/W	7:0	Z sensor offset	
Z_OFF_TC_CAL1	0x29	R/W		Z sensor offset temperature calibration 1 st segment	
Z_OFF_TC_CAL2	0x2a	R/W	3:0	Z sensor offset temperature calibration 2 nd segment	
TC_CAL	0x2b	R/W		Temperature compensation calibration	
CLOCK_CAL	0x2c	R/W		Calibrate clock to 4 MHz	
DEVICE_ID1	0x2d	R/W		Factory data	
DEVICE_ID2	0x2e	R/W			
CHECKSUM FACTORY	0x2f	R/W		Reserved	

 Table 12: EEPROM Shadow registers map

Note 1: The interrupt threshold used internally is calculated as defined in section 4.3.3 **Error! Reference source not** *found.* above.

Note 2: If the factory page lock bit is set, those shadow registers cannot be modified anymore.

3.4.1.3 Test registers

They are used to configure the device into test mode for design validation and production testing.

Register ID	Add	Mode	Bit	Meaning	Default
TEST1	0x30	R/W	7:0	Reserved	
TEST2	0x31	R/W	7:0	Reserved	

 Table 13: Test registers map

4.4.2. I2C commands

When the host sends an I2C command, it issues a write at the address of the command. The first data byte must be equal to the bitwise logic inversion of the command byte, and any additional byte is disregarded A flag in the STATUS register will be set to indicate that a command is being processed, and cleared once the processing of the command is complete.

Register ID	Add	Mode	Bit	Meaning
CMD_WAKEUP	0xf0	R/W	7:0	Initiate an On-demand acquisition.
CMD_EE_ACCESS	0xf1	R/W	7:0	Configure the device so the host can write into the EEPROM shadow registers, program the EEPROM and read back the EEPROM contents into the shadow registers.
CMD_EE_PROG_USER	0xf2	R/W	7:0	The contents of the EEPROM shadow registers are written into the EEPROM memory space (user page). This command will apply only if the user page lock bit is not set.
CMD_EE_PROG_FACTOR Y	0xf3	R/W	7:0	The contents of the EEPROM shadow registers are written into the EEPROM memory space (Factory page). This command will apply only if the factory page lock bit is not set.
CMD_EE_READ	0xf4	R/W	7:0	READ the EEPROM contents and update the EEPROM shadow registers accordingly (both user and factory page).
CMD_OPER	0xf5	R/W	7:0	Exit the EEPROM access mode and go back to normal operation. The EEPROM shadow registers are loaded with the current EEPROM contents.

Table 14: I2C command map.

5. MECHANICAL

5.1. Pin function description and position (I2C interface)

Pin-out for DFN-8 package.

Figure 4: DFN-8 Illustration

Pin #	Symbol	Туре	Description	Bonded to package			
1	SCL	Digital Input PU ¹	I2C clock input	Yes			
2	GND	Ground	Ground.	_			
3	GND	Ground	Ground.	-			
4	INT	Digital Output	Interrupt dedicated output.	-			
5	VCCIO	Power	Powers the digital I/Os. Can be connected to VCC if	-			
			compatible with the I2C host controller.	_			
6	VCC	Power	Power (2.5V-5V)	_			
			Should be forced to 5V for EEPROM programming	_			
7	GND	Ground	Ground.	_			
8	SDA	Digital Inout PU ¹ OD ²	I2C data.				
-	AMUX	Analog Output	Test pad to monitor internal voltages in	No			
			Test/Debug mode.				
Table 15: Pin list (DFN8)							

(1) PD means weak internal Pulldown; PU means weak internal Pullup.

(2) OD means Open-Drain.

Pin-out for DFN-6 package.

Figure 5: DFN-6 Illustration

Pin #	Symbol Type		Description	Bonded to				
				package				
1	SCL/INT	Digital Inout PU ¹ OD ²	I2C clock input / interrupt output	Yes				
2	GND	Ground	Ground.	-				
3	GND	Ground	Ground.	-				
4	VCC	Power	Power (2.5V-4.2V)	-				
			Should be forced to 5V for EEPROM					
			programming					
5	GND	Ground	Ground.	-				
6	SDA	Digital Inout PU ¹ OD ²	I2C data.	-				
-	AMUX	Analog Output	Test pad to monitor internal voltages in	No				
			Test/Debug mode.					
-	INT	Digital Output	Interrupt dedicated output.	-				
-	VCCIO	Power	Powers the digital I/Os. Can be connected to VCC	Bonded to				
			if compatible with the I2C host controller.	VCC pad on				
				lead frame				

Table 16: Pin list (DFN6)

(3) PD means weak internal Pulldown; PU means weak internal Pullup.

(4) OD means Open-Drain.