AFBR-S4PEPCBDC:
 Testing and Demonstration

Dr. Tim Fitzpatrick
R\&D Applications Engineer

October 2023

The AFBR-S4PEPCBDC: A DC Readout Evaluation PCB

Schematics

- DC Readout over 50Ω load resistor
- Compatible with Thorlabs SM1 cage mount systems

Thorlabs frame not included!

SiPM on Carrier PCB

Carrier PCB compatible with AFBR-S4E001 (SiPM evaluation kit) and AFBR-S4PEPCBDC (DC readout PCB)

Available SiPM on interposer PCB (for evaluation only):

- AFBR-S4N22P014M ($2 \times 2 \mathrm{~mm}^{2}$ single element)
- AFBR-S4N44P014M ($4 \times 4 \mathrm{~mm}^{2}$ single element)
- AFBR-S4N66P014M ($6 \times 6 \mathrm{~mm}^{2}$ single element)

AFBR-S4N44P014M on carrier PCB attached to AFBR-S4PEPCBDC

Pulse Spectrum in Persistence Mode of AFBR-S4N44P014M (at 12 VOV)

Direct input over 25Ω without amplifier

Single Pulses: Dark Counts and Crosstalk (at 50 MHz BW)

Pulse Train: Dark Counts and Crosstalk

Pulse Train in $50 \mu \mathrm{~s}$ time window (500 MHz BW, 12 VOV)

The pulses with approx. 1 mV amplitude represent regular dark counts.
Pulses with amplitudes of 2 mV and higer represent a dark count including direct crosstalk

Waveform Measurements (1 p.e. Pulse): A Comparison

"low-pass" affects mainly the fast signal component*

Charge conservation prolongs time until signal has returned to baseline for larger SiPM active area

$$
\begin{array}{ll}
1 \text { p.e. } \text { Amplitude }_{2 \times 2}: & 2.3 \mathrm{mV} \\
1 \text { p.e. Amplitude } \\
1 \text { p.4: } & 0.9 \mathrm{mV} \\
1 \text { p.e. Amplitude } & 0.45 \mathrm{mV}
\end{array}
$$

Summary

This slide provides a brief overview of the Broadcom AFBR-S4PEPCBDC DC readout evaluation PCB.
This PCB supports fast testing and is compatible with Thorlabs cage mount systems SM1 for easy mounting and alignement into optical systems.

The AFBR-S4PEPCBDC offers a direct output with 50Ω load (effectively 25Ω on 50Ω oscilloscope input impedance) which can be evaluated directly on an oscilloscope or further be processed using an amplifier.

\bumpeq BROADCOM

Thank You

a BROADCOM
 connecting everything。

